Security Scan Report: cynthiaksmithl.pages.dev

Site favicon
Submitted: Nov 13, 2025, 5:43:07 PMCompleted: Nov 13, 2025, 5:43:33 PMpubliccompleted
Loading additional data...

Summary

This website contacted 45 IPs in 3 countries across 15 domains to perform 42 HTTP transactions. The main domain is cynthiaksmithl.pages.dev.

Submitted URL: https://cynthiaksmithl.pages.dev/khizc-social-security-benefits-calendar-2025-yqmhg/

AI Security Verdict

High Risk

Confidence: 88%

8
Risk Score

High‑risk phishing site impersonating Google; do not trust and report.

Risk Factors
Brand impersonation (Google) on a non‑official, unranked domain
Domain not listed in Cisco Umbrella top 1 M rankings
Domain appears to be newly registered or of unknown age
Domain age information unavailable

Details

Page Title

Social Security Benefits Calendar 2025 - Cynthia K Smith

Scan Type

public

Language

🇺🇸

English

(80% confidence)

Category

government public service

(44%)

Domain Information

Domain 'cynthiaksmithl.pages.dev' uses the developer-focused generic top-level domain (.dev) and includes subdomain 'cynthiaksmithl'. Its registrable label 'pages' stretches across 5 characters with two vowels and 3 consonants. It segments into 1 word: pages. Median word length is five characters. No strong language cues emerged from the frequency lists.

Screenshot

Security scan screenshot of https://cynthiaksmithl.pages.dev/khizc-social-security-benefits-calendar-2025-yqmhg/

Page Load Overview

8.34s
Total Load Time
42
HTTP Requests
15
Domains
1.8 MB
Total Size

Language Analysis

Primary Language

🇺🇸English
Code: en
Confidence:80%
Script:Latin
Direction:ltr

Detection Details

Language Code:en
Detection Confidence:80%
Script Type:Latin
HTML Lang Attribute:en-US
Text Length:3,589 chars
Detector Agreement:100%

Website Classification

Primary Category

government public service44% confidence
Type: dynamic
Method: ml+structural

All Detected Categories

government public service
44%
corporate
35%
news/blog
30%

Detected Features

Search
Articles
OG: article
Schema.org

Domain & IP Information

RequestsIP AddressLocationAS Autonomous System
42142.250.74.195United States
AS15169GOOGLE
046.229.172.197Netherlands
AS39572DataWeb Global Group B.V.
0172.217.18.10United States
AS15169GOOGLE
0192.0.77.2San Francisco, California, United States
AS2635AUTOMATTIC
0150.171.28.10United States
AS8075MICROSOFT-CORP-MSN-AS-BLOCK
0104.26.4.18United States
AS13335CLOUDFLARENET
0142.250.185.227United States
AS15169GOOGLE
0142.250.185.163United States
AS15169GOOGLE
045.223.102.78United States
AS19551INCAPSULA
0104.21.18.46United States
AS13335CLOUDFLARENET
4245--

Content Similarity HashesFor malware variant detection

TLSH (Trend Micro Locality Sensitive Hash)

Security-focused

Specialized for malware detection and similarity analysis

T1FF43C521C8BC2C63356E42D4A272732EAD67A507CA131E1932FCB6145B83D6B45BF6CD

ssdeep (Context Triggered Piecewise Hashing)

Context-aware

Detects similar content even with modifications

1536:Yapgb0TIl536avD7SnfWdO2t/GnwbnX0fAlLrbf95Em:XdTi53lUm

sdhash (Similarity Digest Hashing)

High-precision

High-precision similarity detection for forensic analysis

sdhash:3:58199:CMKMQkwWQNPQBJ64UoUXJBazjGwFDERYAhARBSSAawrEHvQwQusIhMEoEAhrAWlwiGIAiIR8IRCFOdXALIAGsQscUacPLkgs

These hashes enable detection of similar websites and malware variants by comparing content similarity even when exact matches aren't found.

Image Hashes

Perceptual Hashes

Average Hash:808080ffffc7c3c3
Perceptual Hash:fc5f348389247c4b
Difference Hash:27393921990f1717
Wavelet Hash:808080ffffc7c3c3
Color Hash:#84931f

Scan History

Scan history not available

Unable to load historical scan data