Security Scan Report: lukegooseberryj.pages.dev

Site favicon
Submitted: Dec 28, 2025, 2:24:49 PMCompleted: Dec 28, 2025, 2:25:14 PMpubliccompleted
Loading additional data...

Summary

This website contacted 17 IPs in 1 country across 19 domains to perform 39 HTTP transactions. The main domain is lukegooseberryj.pages.dev and was registered NaN years ago.

Submitted URL: https://lukegooseberryj.pages.dev/rrtwc-social-security-data-breach-2025-notification-zjurl/

AI Security Verdict

High Risk

Confidence: 88%

8
Risk Score

High‑risk phishing page impersonating a Social Security breach notification.

Risk Factors
Malicious external link to pages.dev (known malicious domain)
Brand impersonation of Social Security on a non‑official domain
Unranked domain with suspicious content
Multiple redirects leading to the final URL
Presence of a subdomain under a known malicious parent domain
Domain age information unavailable

Details

Page Title

Social Security Data Breach 2025 Notification - Luke J. Gooseberry

Scan Type

public

Language

🇺🇸

English

(80% confidence)

Category

government public service

(47%)

Domain Information

Domain 'lukegooseberryj.pages.dev' uses the developer-focused generic top-level domain (.dev) with subdomain 'lukegooseberryj'. Count 5 characters in 'pages' containing 2 vowels alongside 3 consonants. Tokenizing the label suggests 1 word: pages. Median word length comes out to five characters. No strong language cues emerged from the frequency lists.

Screenshot

Security scan screenshot of https://lukegooseberryj.pages.dev/rrtwc-social-security-data-breach-2025-notification-zjurl/

Page Load Overview

7.37s
Total Load Time
39
HTTP Requests
0
Domains
N/A
Total Size

Language Analysis

Primary Language

🇺🇸English
Code: en
Confidence:80%
Script:Latin
Direction:ltr

Detection Details

Language Code:en
Detection Confidence:80%
Script Type:Latin
HTML Lang Attribute:en-US
Text Length:3,278 chars
Detector Agreement:100%

Website Classification

Primary Category

government public service47% confidence
Type: dynamic
Method: ml+structural+ocr_tiebreaker

All Detected Categories

government public service
47%
documentation technical
40%
news/blog
30%
download file sharing
27%
adult content
25%

Detected Features

Search
Articles
OG: article
Schema.org

Domain & IP Information

RequestsIP AddressLocationAS Autonomous System
20172.66.47.204United States
AS13335CLOUDFLARENET
4172.217.18.3UnknownUnknown
1104.21.18.46United States
AS13335CLOUDFLARENET
116.15.199.33UnknownUnknown
1172.240.127.234UnknownUnknown
1104.20.23.96United States
AS13335CLOUDFLARENET
1172.67.71.216UnknownUnknown
1172.66.40.215UnknownUnknown
1172.66.169.241UnknownUnknown
1185.2.4.47UnknownUnknown
017--

Detected Technologies8

WordPressv6.6.1
100%
JQueryv3.7.1
100%
Bootstrapv4.5.0
100%
50%

Content Similarity HashesFor malware variant detection

TLSH (Trend Micro Locality Sensitive Hash)

Security-focused

Specialized for malware detection and similarity analysis

T184031933909C157B3A1F73D8A1A2B31CE5A7A528CE13472A7AFC61148F90DF645B711E

ssdeep (Context Triggered Piecewise Hashing)

Context-aware

Detects similar content even with modifications

768:uunoSQ0ryI0dMZdapzVTWZgaj0nO4GdMzztv+RxoODYx1rJ5YxYM:uunoSQ0ryI0d8apZTWCaj0nO4GdMntvE

sdhash (Similarity Digest Hashing)

High-precision

High-precision similarity detection for forensic analysis

sdhash:3:39536:gWISBQ02eRhRIJo8QURlgBUrKlgADFQioRAokKQEZIAFuAw4URzKYBAKLG7AicIgBAooyrY5BgPFLAIabFIwolsUPS4LyIAK

These hashes enable detection of similar websites and malware variants by comparing content similarity even when exact matches aren't found.

Image Hashes

Perceptual Hashes

Average Hash:dfffffffdf878787
Perceptual Hash:b2cd3632c97a31cc
Difference Hash:3b0c4c1b130e2c2e
Wavelet Hash:99c7e7c9c3838383
Color Hash:#6ce0d8

Other Hashes

Scan History

Scan history not available

Unable to load historical scan data