Security Scan Report: gopay32.vnyn.top

Redirected to: https://gopay32.vnyn.top/?bagi-saldo=32#1768440123823

Submitted: Jan 15, 2026, 1:22:00 AMCompleted: Jan 15, 2026, 1:23:50 AMpubliccompleted
Loading additional data...

Summary

This website contacted 9 IPs in 1 country across 7 domains to perform 22 HTTP transactions. The main domain is gopay32.vnyn.top and was registered NaN years ago.

Submitted URL: https://gopay32.vnyn.top/?bagi-saldo=32

Effective URL: https://gopay32.vnyn.top/?bagi-saldo=32#1768440123823Redirected

AI Security Verdict

Confirmed Scam

Confidence: 92%

10
Risk Score

Impersonates GoPay on a new unranked domain; likely phishing scam.

Risk Factors
Brand impersonation (GoPay) on a non‑official domain
Domain age < 90 days (new) with brand claim
Domain not in Cisco Umbrella top 1M (unranked)
Suspicious promotional claim of free money (Rp500.000) to lure users
Domain age information unavailable

Details

Page Title

Hajatan Ulang Tahun GoPay: Bagi-Bagi Saldo Rp500.000 untuk Semua Pengguna

Scan Type

public

Language

🇮🇩

ID

(50% confidence)

Category

social media network

(92%)

Domain Information

The domain 'gopay32.vnyn.top' uses the .top top-level domain; it also runs on subdomain 'gopay32'. The second-level label 'vnyn' is 4 characters long split between 0 vowels and 4 consonants. Segmentation suggests three words: v, ny, n. Average segment length settles at 1 character. No strong language cues emerged from the frequency lists.

Screenshot

Security scan screenshot of https://gopay32.vnyn.top/?bagi-saldo=32

Page Load Overview

1.00s
Total Load Time
22
HTTP Requests
7
Domains
349 KB
Total Size

Language Analysis

Primary Language

🇮🇩Indonesian
Code: id
Confidence:50%
Script:Unknown
Direction:ltr

Detection Details

Language Code:id
Detection Confidence:50%
Script Type:Unknown
Text Length:2,190 chars
Detector Agreement:100%

Website Classification

Primary Category

social media network92% confidence
Type: dynamic
Method: ml+structural

All Detected Categories

social media network
92%
finance banking
71%
cryptocurrency blockchain
61%
government public service
55%
technology software
48%

Detected Features

Comments
OG: website

Domain & IP Information

RequestsIP AddressLocationAS Autonomous System
6172.67.184.128United States
AS13335CLOUDFLARENET
2151.101.2.137United States
AS54113FASTLY
2104.21.81.244United States
AS13335CLOUDFLARENET
2104.21.96.156United States
AS13335CLOUDFLARENET
2172.67.192.33United States
AS13335CLOUDFLARENET
2142.250.186.138United States
AS15169GOOGLE
2172.67.144.182United States
AS13335CLOUDFLARENET
2104.16.174.226United States
AS13335CLOUDFLARENET
2142.250.185.195United States
AS15169GOOGLE
229--

Content Similarity HashesFor malware variant detection

TLSH (Trend Micro Locality Sensitive Hash)

Security-focused

Specialized for malware detection and similarity analysis

T1C203848EB6F3041E812390A2DFBF270966B58D17E70ECE143E9C47C48F89956E66275C

ssdeep (Context Triggered Piecewise Hashing)

Context-aware

Detects similar content even with modifications

768:46rGFQZV6gRmTFG5GSFhFpFAFNPdKBV0RFQRtJTcwAWo4ajTf3TNvqiB++tld4Bn:vrGFQZV6gRmTFG5GSrXezPdKB6RORtJd

sdhash (Similarity Digest Hashing)

High-precision

High-precision similarity detection for forensic analysis

sdhash:3:40616:IiIB0QBIIFACAQoMCR6B5qyVKBmlCCEFuoBmAiJWgcfDggEkyChTFKGBI5kkCBAEDU0HRkBACERHAiIBkMKgAEYEKQIYAkV4

These hashes enable detection of similar websites and malware variants by comparing content similarity even when exact matches aren't found.

Image Hashes

Perceptual Hashes

Average Hash:80066000f6e72707
Perceptual Hash:a649b4b56a4b69c6
Difference Hash:032cc3638c8ccccc
Wavelet Hash:c006f000f7ff6f07
Color Hash:#e09a6c

Scan History

Scan history not available

Unable to load historical scan data