Security Scan Report: ignaciowilhelm.pages.dev

Site favicon
Submitted: Jan 2, 2026, 6:47:02 AMCompleted: Jan 2, 2026, 6:48:11 AMpubliccompleted
Loading additional data...

Summary

This website contacted 14 IPs in 1 country across 15 domains to perform 50 HTTP transactions. The main domain is ignaciowilhelm.pages.dev and was registered NaN years ago.

Submitted URL: https://ignaciowilhelm.pages.dev/gncwbxm-social-security-2025-calendar-india-wlhlmhqw/

AI Security Verdict

High Risk

Confidence: 95%

7
Risk Score

Site is high‑risk due to malicious primary domain and deceptive government‑service impersonation.

Risk Factors
Malicious primary domain (pages.dev) Indicator of Compromise match
Unranked/low‑reputation domain hosting potentially deceptive content
Possible brand impersonation of a government service (Social Security) on a personal subdomain
Domain age information unavailable

Details

Page Title

Social Security 2025 Calendar India - Ignacio Wilhelm

Scan Type

public

Language

🇺🇸

English

(80% confidence)

Category

social media network

(72%)

Domain Information

Domain 'ignaciowilhelm.pages.dev' uses the developer-focused generic top-level domain (.dev) and includes subdomain 'ignaciowilhelm'. The second-level label 'pages' is 5 characters long split between 2 vowels and three consonants. It segments into one word: pages. Median word length is five characters. No strong language cues emerged from the frequency lists.

Screenshot

Security scan screenshot of https://ignaciowilhelm.pages.dev/gncwbxm-social-security-2025-calendar-india-wlhlmhqw/

Page Load Overview

2.36s
Total Load Time
49
HTTP Requests
15
Domains
2.8 MB
Total Size

Language Analysis

Primary Language

🇺🇸English
Code: en
Confidence:80%
Script:Latin
Direction:ltr

Detection Details

Language Code:en
Detection Confidence:80%
Script Type:Latin
HTML Lang Attribute:en-US
Text Length:2,991 chars
Detector Agreement:100%

Website Classification

Primary Category

social media network72% confidence
Type: spa
Method: ml+structural

All Detected Categories

social media network
72%
government public service
68%
corporate
35%
healthcare medical
29%
adult content
26%

Detected Features

Search
Articles
OG: website
Schema.org

Domain & IP Information

RequestsIP AddressLocationAS Autonomous System
10188.114.96.3United States
AS13335CLOUDFLARENET
3104.20.23.96United States
AS13335CLOUDFLARENET
3108.167.156.41Ashburn, Virginia, United States
AS31898ORACLE-BMC-31898
3172.66.169.241United States
3142.250.185.99United States
AS15169GOOGLE
3150.171.27.10United States
AS8075MICROSOFT-CORP-MSN-AS-BLOCK
3192.185.5.168United States
AS19871NETWORK-SOLUTIONS-HOSTING
3142.250.185.97United States
AS15169GOOGLE
3192.0.77.2San Francisco, California, United States
AS2635AUTOMATTIC
3104.16.151.108United StatesUnknown
4914--

Detected Technologies11

Content Similarity HashesFor malware variant detection

TLSH (Trend Micro Locality Sensitive Hash)

Security-focused

Specialized for malware detection and similarity analysis

T19593F8A1D1D131262767835CF6C4B985BF9EB354D5410FE0B1BD870E0FD8A89A6A370B

ssdeep (Context Triggered Piecewise Hashing)

Context-aware

Detects similar content even with modifications

1536:6kapqdo7N+N4Qibc+7d3K8Wjc+7d3K8Wl8uhWJ1BM6E8WvSAc8B2rZ7U9zbnDEB6:kzHzYyXrm2g00DyBp

sdhash (Similarity Digest Hashing)

High-precision

High-precision similarity detection for forensic analysis

sdhash:3:90825:IpVkQBQUIhXpLJRIjYgy0CpBJQXsBxxAIEAQ7wh0bbnBgGogIzBB8MgJBTSmAK3xzhAiItMjsEQM0IAiAEQhQh0osQoBZ4AV

These hashes enable detection of similar websites and malware variants by comparing content similarity even when exact matches aren't found.

Image Hashes

Perceptual Hashes

Average Hash:ffffff9f87838387
Perceptual Hash:bccbc466c838c367
Difference Hash:20241d3b2e0f2f3f
Wavelet Hash:9f9f8f8583838383
Color Hash:#40b0bf

Scan History

Scan history not available

Unable to load historical scan data