Security Scan Report: anitamtaylorj.pages.dev

Submitted: Jan 12, 2026, 4:21:15 PMCompleted: Jan 12, 2026, 4:23:14 PMpubliccompleted
Loading additional data...

Summary

This website contacted 9 IPs in 2 countries across 10 domains to perform 43 HTTP transactions. The main domain is anitamtaylorj.pages.dev and was registered NaN years ago.

Submitted URL: https://anitamtaylorj.pages.dev/ywwla-social-security-payment-calendar-2025-hyspk/

AI Security Verdict

Low Risk

Confidence: 82%

4
Risk Score

Low risk site offering a public calendar; not an official SSA source but no malicious activity detected.

Risk Factors
Impersonates Social Security brand on a non‑official domain
Safety Factors
Well‑established domain age
No credential or payment collection
Domain age information unavailable

Details

Page Title

Social Security Payment Calendar 2025 - Anita M Taylor

Scan Type

public

Language

🇺🇸

English

(80% confidence)

Category

entertainment media

(89%)

Domain Information

Within the developer-focused generic top-level domain (.dev), 'anitamtaylorj.pages.dev' is registered; it also runs on subdomain 'anitamtaylorj'. The core label 'pages' covers 5 characters split between 2 vowels and three consonants. Segmentation suggests 1 word: pages. Expect 5 characters per word on average. No strong language cues emerged from the frequency lists.

Screenshot

Security scan screenshot of https://anitamtaylorj.pages.dev/ywwla-social-security-payment-calendar-2025-hyspk/

Page Load Overview

43.08s
Total Load Time
38
HTTP Requests
10
Domains
1.3 MB
Total Size

Language Analysis

Primary Language

🇺🇸English
Code: en
Confidence:80%
Script:Latin
Direction:ltr

Detection Details

Language Code:en
Detection Confidence:80%
Script Type:Latin
HTML Lang Attribute:en-US
Text Length:4,513 chars
Detector Agreement:100%

Website Classification

Primary Category

entertainment media89% confidence
Type: dynamic
Method: ml+structural+ocr_tiebreaker

All Detected Categories

entertainment media
89%
government public service
48%
corporate
35%
documentation technical
33%
adult content
30%

Detected Features

Search
Articles
OG: article
Schema.org

Domain & IP Information

RequestsIP AddressLocationAS Autonomous System
6192.0.77.2San Francisco, California, United States
AS2635AUTOMATTIC
4172.66.44.57United States
AS13335CLOUDFLARENET
4172.66.40.135United States
AS13335CLOUDFLARENET
4104.21.18.46United States
AS13335CLOUDFLARENET
4146.75.120.84Frankfurt am Main, Hesse, Germany
AS54113FASTLY
4216.58.206.54GermanyUnknown
4150.171.27.10United States
AS8075MICROSOFT-CORP-MSN-AS-BLOCK
4142.250.185.65United States
AS15169GOOGLE
4104.18.14.19United States
AS13335CLOUDFLARENET
389--

Detected Technologies11

Content Similarity HashesFor malware variant detection

TLSH (Trend Micro Locality Sensitive Hash)

Security-focused

Specialized for malware detection and similarity analysis

T103130732A5A81437369F83E8D262B31DFA69D511CE035B6E31FC6598AFD0DF640A314E

ssdeep (Context Triggered Piecewise Hashing)

Context-aware

Detects similar content even with modifications

768:AZdapFLHTIZZSyWpzCiqt03qUZm4uo39YRuSLa1wJf5LJrA:oapVHTIiyszCn06Ym4uo39YRuSLa1wJs

sdhash (Similarity Digest Hashing)

High-precision

High-precision similarity detection for forensic analysis

sdhash:3:44279:MGrQATgzZuhMRA5FlIAgQQUoI60R4EpBpCIgmsEBCAHCAICAEiAJZFJcZDQAtrCniC5GI5ElZmCUpkNhcoBVmIgeDCgBYEIC

These hashes enable detection of similar websites and malware variants by comparing content similarity even when exact matches aren't found.

Image Hashes

Perceptual Hashes

Average Hash:fffd01038383b7bf
Perceptual Hash:af5ad091a52f4fc0
Difference Hash:5e19656756574747
Wavelet Hash:ff8d01030303b7bf
Color Hash:#2d7086

Other Hashes

Crop Resistant:5e19656756574747

Scan History

Scan history not available

Unable to load historical scan data